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1.0 EXECUTIVE SUMMARY
1.1 Program Goal

For half a century, CdZnTe/CdTe has been investigated for producing radiation detectors.
Albeit somc success, detector performance and production yield issues remain. Most
importantly, the basic scicnce about the factors limiting the detector property and production
yield was not understood. The goal of this program was to experimentally and theoretically
understand these limiting factors. In addition, techniques will be developed to remove these
factors.

1.2  Results - Science

In this program, 160 CZT crystals have been grown to achieve the program goal. It is
discovered that Cd vacancies and Te antisites (T¢ at €d sitcs) are the two major defects that limit
the performance of the CZT/CdTc detectors. The mtroductlon of Zn into the crystals is one way
to reduce the density of Te antisites.

1.3 Results — Detectors

A process to reduce Cd vacancies has been developed for the growth of CZT crystals. Zn
has been introduced into the crystals to reduce the densities of Te antisites. Using thesc
approaches, CZT with Zn contents of 0%, 4%, 10%, 15%, and 20% have been produced and
detectors have been fabricated. The best detectors are produced in CZT grown with 10% Zn and
1.5% excess Te. The resolution of *’Co 122keV peak is less than 5% at room temperature.

1.4 Future R&D Direction

New approaches to drastically reduce the density of Tc antisites are desired for further
improving the quality of CZT/CdTe detectors.

1.5  Introduction of this Report

In this report, we put together six papers. These papers were published in five journals,
reported in eleven presentations, and printed in four conference proceedings.
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2.0 TELLURIUM ANTISITES IN CdZnTe

1. M.Chu, S. Terterian, D. Ting, R.B. James, J.C. Erickson, H.-W. Yao, T.T. Lam, M. Szawlowski,
and R. Sczeboitz, “Tellurium Antisites in CdZnTe,” SPIE Proceedings (Invited Paper), 4507,
San Diego, 2001.

2. M. Chu, S. Terterian, D. Ting, R.B. James, J.C. Erickson, H.W. Yao, T.T. Lam, M. Szawlowski,
and R. Sczeboitz, “Defect Engineering for Producing High Performance CdZnTe Radiation
Detectors,” IEEE NSS/MIC Conference (Invited Paper), San Diego, 2001.

3. M. Chu, S. Tertcrian, D. Ting, S. Mesropian, R.H. Gurgenian, and C.C. Wang, “Tellurium
Antisites in CdZnTe,” Appl. Phys. Lett. 79, 2728 (2001).
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4.0 EFFECTS OF P/N INHOMOGENEITY ON CdZnTe RADIATION
DETECTORS
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ABSTRACT

Spectrometer grade, room-temperature radiation detectors have been produced on CdygZngoTe -
grown by the low-pressure Bridgman technique. Small amount of indium has been used to compensate the
uncompensated Cd vacancies for the crystals to be semi-insulating. The properties of the detectors are
critically dependent on the amount of excess Te introduced into the growth melts of the CdyggZn, sz Te crystals
and the best detectors are fabricated from crystals grown with 1.5% excess Te. Detector resolution of *Co
and *'Am radiation peaks are observed on all detectors except the ones produced on CdggZng oTe grown
from the melt in the stoichlometric condition. The lack of resolution of these stoichiometric grown detectors
is explained by a p/n conduction-type inhomogeneity model.

Keywords: CdTe, CdZnTe, Radiation Detectors, Gamma Ray Detectors, Defects, Te Antisites.

1. INTRODUCTION

CdTc and CdZnTe (CZT) have been considered to be promising semiconductors for producing room
temperature radiation detectors for decades.! However, the only high quality room-temperature CdTe/CZT detectors
arc fabricated from Cdg gZng 20Te grown under a high pressure condition.? In this paper, we report the properties of
spectrometer grade CdywZng.1pTe detectors produced on low-pressure grown crystals. The detector testing results as
a function of excess Te in the crystal growth melts are described in Section 2. The poor resolution of detectors
fabricated from crystals grown from stoichiometric melts is explained by an inhomogencity model in Scction 3.

2. EXPERIMENTAL RESULTS

In this study, five groups of CdggoZny.1gT¢ crystals were respectively grown by the low pressure Bridgman
technique using melts with excess Te in the amounts of 0.0, 1.0, 1.5, 2.0, and 3.0 atomic percent. Without impurity
doping, all of these crystals are p-type, which is the result of net acceptors of Cd vacancies after the compensation of
acceptors of Cd vacancies by the shallow donors of singly ionized Te antisites.” To produce CZT with high
resistivities, crystals in cach of the above five groups were doped with indium (shallow donors) in different
quantities until a high resistivity crystal was obtained. The armount of indium required for producing high resistivity
CZT needs to be controlled very precisely. The reproducibility of the high resistivity is about 75%.

The indium concentration introduced into the crystals for achieving a high resistivity for each of the five
groups is shown in Table I. The data clearly shows that the indium density needed for obtaining a high resistivity
crystal is proportional to the magnitude of the excess Te in the crystal growth melt. For Crystal 9294, grown
without excess Te, a very low indium concentration on the order of 2x10" cm™ is sufficient to compensate the
residual Cd vacancies to achieve a high resistivity. As the amount of excess Te increases, more indium is required
for compensating the residual Cd vacancies. This phenomenon indicates that a CZT crystal has more net Cd
vacancies as the crystal is grown with more excess Te.

* E-mail: M.Chu@PFegmionics.com
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Table I. Propertics of Cdy sZng, o Te crystals and detectors as a function of excess Te in crystal
growth meit. “X” denotes “not resolved.”

Stolchiometry 1.000 1.010 1.015 1.020 1.030
/(Cd+Zn)) .

Crystal Log # 9294 9489 0872 9618 9238

Resistivity (Q-cm 10° 100 >10° >10° 100

indium-doping {cm 2.4x10°_| 33x10°_| 25x10° | 6.4x10" 1x10"
Co 122 keV Peak X Resolved | 6.0kev | 134keV | Resolved
Co 136 keV Peak X X Resolved Resolved Resolved
X
X

FWHM of “'Am Resolved 3.6 keV 6.5 keV 6.6 keV
@ 59.5 keV
Np-L, Te-K, Cd and Te X Resocived X X
Escape Peaks
From *'Am

Radiation detectors, with sizes between 4x4x! mm’ and 5x5x3 mm®, were fabricated in wafers from cach
of the five crystals listed in Table I and were subsequently tested using radiation sources of ¥'Co and *'Am. The
testing results are also summarized in Table I Evidently, the CdggZng 1oTe detector performance critically depends
on the amount of excess Te added into the crystal growth meits. The detectors fabricated from Crystal 9294, which
was grown without cxcess Te, cannot resolve any of the radiation peaks of ¥'Co and 2*'Am. Instead, a random broad
peak was observed. A 'Co spectrum mcasured by these detectors is shown in Figure 1. This observation is
consistent with the fact that there is no reported room-temperature detection result on detectors fabricated in
CZT/CdTe grown without excess Te.

2000 IR I B N R I B R
F o7 -
1800 |~ . -
- V122ke\l -
5,1200- i Pulsor -
’ . I -
|
2 ol ! -
R | .
400 - | -
u i
ok 1 N 11 |18 X T
1] 50 100 180 200 250
Channel Numbers

Figure 1. Spectrum of *'Co measured by detectors (4x4x1 mm’, 100V) from CZT 9294,

The detectors from Crystal 9489, which was grown with 1% excess Te, have better performance and can
resolve the 'Co 122 keV and *'Am 59.5 keV peaks. The best detectors among those listed in Table I are fabricated
from CZT 9364, a crystal grown with 1.5% excess Te. The *'Am and ¥'Co spectra measured by these detectors are
shown in Figures 2 and 3, respectively. In addition to the %Co 122 keV, 'Co 136 keV, and *'Am 59.5keV peaks,
the detectors can also resolve the six **'Am low energy Np-L, Te-K, Cd-cscape, and Te-escape peaks. Besides, the
full widths at half maximum (FWHM) of the Co 122 keV and *'Am 59.5keV peaks have very low values of 6.0
keV and 3.6 keV, respectively.

When more than 1.5% excess Te is introduced into the CZT growth melt, detectors with the capability of

resolving the radiation peaks can still be produced from the grown crystal; but the performance of the detectors
begin to degrade. As shown in Tablc I, the degree of degradation is proportional to the amount of the excess Te
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uscd for the CZT growth. Detectors from CZT 9618, which were grown with 2.0% cxcess Te, can resolve the major
"Co and *"'Am peaks. The values of the FWHMs of the ¥Co 122 keV and *'Am 59.5keV peaks are still
respectable.  But the detectors can detect only the envelop of the low energy **'Am 59.5keV peaks instead of the
individual ones. The characteristics of detectors from CZT 9238, a crystal grown with 3.0% excess Te, are even
worse. There is a broad shoulder to the left side of the ¥Co 122 keV peak, a typical sign of high hole trapping. Asa
result, a meaningful FWHM value of this peak cannot be measured. .
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Figure 3. Spectrum of *'Co measured by a detector from CZT 9364
3. DISCUSSIONS

The discussion of the gencral properties of the detector results in Table I will be published elsewhere. In
this paper, the discussion will be focused on detectors from CZT 9294, The *’Co spectrum measured by these
detectors from is shown in Figure 1. None of the characteristic ¥Co peaks is observed. Instcad, there is a broad
peak with cnergy much lower than the 122 keV. To understand the cause of such results, a separate experiment was
conducted. Scveral detectors from CZT 9294 and CZT 9364 were exposed to visible light and the DC and low
frequency photocurrent from cach detector was measured. All detectors from CZT 9294 have photocurrents more
than twenty times higher than those mcasured on the well-behaved detectors from CZT 9364. How can CZT 9294
detectors that cannot resolve gamma ray peaks show such peculiar high photocurrents to visible light? For such
high currents, the hole lifetime in CZT must be higher than an unheard value of 20 puscc, To explain these results, a
model* proposed on small bandgap, near intrinsic HgCdTe can be used.
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In low carricr concentration (~10'* cm™) n-type HgCdTe with a cutoff wavelength of ~12 jm, extended p-
type inclusions or domains arc frequently observed.® Dislocations are a potential cause of the p-type domains. In
near intrinsic n-type material, a small amount of acceptor impuritics or defects (21x10'"* cm™) diffused through
dislocations can easily convert the neighborhood of the dislocations to p-type. The symptoms of such a structure arc
a highcr than normal DC and low ﬁtquenc)' photocurrent in photoconductors larger than 1 mm, and an unreasonably
high mecasured hole lifctime. The model® developed to explain these phenomena states that the extended p-type
domains in the n-type matrix form a potential well for holes. When the p-type domains form a network connected to
the cathode, a new mechanism to collcct the holes is formed: the photo-generated holes in the n-type matrix can drift
into the potential well and be colleccred. This process is illustrated in Figure 4. In a conventional n-type HgCdTe
photoconductor with no p-type domain, as shown in Figure 4(a), holes that can be collected by the cathode must be
generated within a distance of A=, E from the cathode, where py, is the hole mobility, 7, is the hole lifetime, and E
is the clectric field. But in n-type HgCdTe with networked p-type domains connected to the cathodc, the situation is
different. Since the holes in the p-type potential well have fewer clectrons to recombine with, they can have a very
long apparent (measured) lifetime (1,”) and drift for a very long distance 4, where “in” denotes “inhomogencity”.
Consequently, as shown in Figure 4(b), holes generated by the photons outside the J, range from the cathode can still
be collected by drifting into the p-type domains and then to the cathode. As a result, the photoconductor can collect
a higher photocurrent. It is noted though that the detectivity of such detectors actuaily suffers because the detector
leakage current and noise are very high.

; X Cathode
t
Lg—fpy —— /
Iy #
ntype tfh=pnE |
: &

h*:o-—-w £y

Figure 4. Modeling of DC collection of photo-generated holes in near intrinsic
n-HgCdTe: (a) homogeneous condition, and (b) inhomogencous condition with
p-networks in n-matrix.

The phenomenon of the peculiar high photocurrent in response to visible light observed on detectors from
CZT 9294 is similar to the excess high photocurrent and unreasonable high carrier lifetime found on the HgCdTe
photoconductors with p/n inhomogeneity. According to the model explained by Figure 4, CZT 9294 may also have
networked p-type domains in an n-type matrix. This idea is consistent with the fact that CZT 9294 was grown from
stoichiometrc melt. Comparing CZT 9294 with other crystals in Table 1, this crystal has the least amount of Cd
vacancics and Te antisites, the defects been proposed as the deep levels to pin the Fermi level to the center of the
bandgap. According to Ref. 5 and 6, it is impossible to achicve homogencous high resistivity simply by close
compensation between shallow donors and acceptors. Any slight fluctuation of the densities of acceptors and donors
can causc conduction-type inhomogeneity. For achieving high resistivity, a semiconductor must have sufficient
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impurities or defects with a deep level near the middle of the bandgap to pin the Fermi level to it. Based on the
above discussion, it becomes clear that the density of decp level Te antisites or Cd vecacancies in CZT 9294 has
reached such a low level that p-type networks has formed in the n-type matrix.

The concept of conduction-type inhomogeneity can be used to well explain the mecasured gamma ray
spectrum shown in Figure 1. The model of this explanation is illustrated in Figure 5. During the measurements, the
shaping time () is typically 1-2 psec and is comparable to the hole lifctime 1,. In a detector without conduction-
type inhomogeneity, the holes generated in a distance of A(1,) = pptE from the cathode are collected within the
shaping time after receiving a gamma ray photon. However, in a detector with networks of p-domains in n-matrix,
many holes are collected by first drifting from the n-matrix to branches of the p-domains, and then to the cathode.
Since in the p-type networks the holes travel through zigzag channcls, and the maximum hole traveling distance is &
(t,), the holes that can be collected in the shaping time ¢, after 2 gamma ray photon reaches the detector arc then in a
distance of J,’ from the cathode, which is shorter than the distance of 4(t,). As a result, detectors from CZT 9294
collect much less holes in t; than a homogeneous detector does in the same time period, and will consider the
incident gamma ray to have a lower energy than it actually has. Furthermore, in the following shaping time periods,
even if there is no incident gamma ray, holes generated by the original gamma ray in the area beyond the distance of
4/ from the cathode are still collected through the p-channels. As a result, when a detector from CZT 9294 reccives
122 keV gamma ray photons, the clectronics does not register single gamma ray photons with this cnergy. Instcad,
it registers a number of low cnergy gamma ray photons. Thus, Figure 1 curve is formed and no characteristic 'Co
peak is observed.

The relationship between 4’ and A(t,) can be approximated by considering the averages of these parameters.
Assuming /, is the average distance the holes travel in the p-channe! in t,, then

l..'=a1,, )

where o is a constant less than 1. Let E' be the average electric field in the p-channel along the velocity of the holes
and E be the electric field in Figurc 5(a), then

E'=aE 2)
Substituting /[, =pyt,E'and Eq.2 to Eq.1, and use /(t,) = m4E,
b = ofh(t) 3)

Since the orientation of each branch of the p-channel is random, the average orientation of [, can be
approximated to be 45° from the orientation of /', and a becomes cos45°. Then, Equation (3) becomes

b = b, )2 )

In homogeneous CZT detectors, most of the holes contributed to the 122 keV pcak in a ¥'Co spectrum are
gencrated and collected in the region within the distance of 4(t,) from the electrode. Now, in the inhomogencous
CZT detectors, these holes are still gencrated in this region, but they will be collected in two consecutive ing
times because of Equation 4. Thercfore, it is expected that in the spectrum of inhomogencous detectors, the *'Co
122 keV gamma ray will register near 61 keV. And this is exactly what is observed in Figure 1. Naturally, for
different degree of inhomogencity, the *Co peak will shift accordingly.

The model described by Figure 5 presents the hole “trapping” effect. By the same argument, the “trapping”
cffect applies to electrons too. Iere, Figure 5 discussed the “trapping” mechanism by the extended routs for holes
and clectrons to travel. Another massive trapping mechanism in the p/n inhomogeneity is the trapping of carriers by
isolated potential wells, which can be easily understood and doesn’t need to be elaborated.
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(a)

(b)

Figure 5. Modeling of gamma ray spectral responsc by CZT detectors
In (a) homogeneous condition, and (b) inhomogeneous condition with
p-networks in n-matrix.

4. SUMMARY

In summary, Spectromcter grade, room-temperature radiation detectors have been produced on
CdpgoZng oTe grown by the low-pressure Bridgman technique. Small amount of indium has been used to
compensate the uncompensated Cd vacancies for the crystals to be semi-insulating. The propertics of the detectors
are critically dependent on the amount of excess Te introduced into the growth melts of the Cdy gZnyg, mTe crystals
and the best detectors arc fabricated from crystals grown with 1.5% excess Te. Detector resolution of *Co and
24 Am radiation peaks are observed on all detectors except the ones produced on CdgeZng 10Te grown from the melt
in the stoichiometric condition. The lack of resolution of these stoichiometric grown detectors is explained by a p/n
conduction-type inhomogeneity model. Because of the lack of excess Te, such crystals do not have sufficient Cd
vacancies and Te antisites, the deep level species, to pin the Fermi level to the middle of the bandgap. As a result, p-
type domains in n-type matrix or vice versa arc formed. Such inhomogeneity causes trapping of clectrons and holes
and results in dctectors with no capability to resolve radiation peaks.
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Distribution of the High Resistivity Region in CdZnTe and its Effect
on Gamma-ray Detector Performance g g

S. Terterian, M. Chu, and D. Ting

Fermionics Corporation, Simi Valley, CA
ABSTRACT §
m

The effect of the location of the high resistivity region on gamma-ray detector performance withi crystal
boule is investigated for 10% zinc with 1.5% excess Te. By varying the indium doping concentration in several
CdZnTe boules, the region of high resistivity is seen to move along the vertical length of the crystal. The variation
of the zinc concentration within the crystal boule is compared with the location of the high resistivity region along
the length of the crystals. The concentration of zinc is extracted from FTIR measurcments, and the scgregation
coefficient is calculated using data obtaincd from the CdZnTe crystals. The zinc distribution is plotted in terms of
the location along the crystal length in order to comelate the concentration with detector performance, Radiation
spectra obtained from the 122KeV gamma rays using a *'Co source reveal a strong dependence between detector
performance, and the relative location of the high resistivity region within the crystal. Initial results suggest that
there are three semi-distinct regions along the length of the boule that give very diffcrent characteristics, where it
can be said that the best dctector performance is in the middle region with a 6 % resolution of the 122KeV peak,
which is quite good for test detectors without a guard ring such as these. It is determined that this middie region has
a zinc concentration of ~9-11%, which varies slightly from the original concentration of 10%. The differences in the
performance characteristics is discussed, and defect distribution within the crystal as the main source of the variation
is suggested. Also, based on the results, it is believed that the. role of indium is essentially to compensate the
vacancics in the crystal, and therefore, secondary to the crystalline properties and impurities within the boule.
Overall, it is believed that crystalline defects and inclusions play a greater role in detcrmining the performance
characteristics of CdZnTe radiation detectors,

Keywords: CdZnTe, Bridgman Growth, Single Crystal, Gamma Ray Detectors
1. INTRODUCTION

Over the recent years, increasing interest in the arca of un-cooled gamma-ray radiation detectors has
occurred. Most recently, a serious need is seen in sensitive, low cost, and portable detectors for homeland security.
Although CdZnTe is a prime candidate that possesses most of the qualities sought today, it has fallen short of
expectations due to poor yield emanating in part from defects and trap centers, especially for medium energies as the
122KeV peak of a “'Co source. Therefarc, in order to obtain higher yields, it has become necessary to better
understand the chcmistry involved in the crystallization of CdZnTe, especially with the distribution of the native
constituents. For gamma-ray detector applications, it is important to obtain crystals with high resistivity, such that
the Fermi level can be pinned near the middle of the band gap, and thus, a high bias can be achicved before
breakdown occurs. This would make it easicr for the photo-generated electron-hole pairs to be collccted in the high
electric field due to the high bias. In this paper, we set out to investigate the effect of the high resistivity region at
different locations within the crystal boulc in order to obtain a greater understanding of the behavior of the various
types of defects.

2. EXPERIMENTAL

Scveral CdZnTe crystals were grown with 10% zinc concentration by low pressure vertical Bridgman
technique. In order to properly determine the effect of zine concentration on device performance for a given starting
concentration of 10%, the location of the high resistivity region was changed by varying the amounts of indium in
the boule for different runs. This has the effect of changing the location of the high resistivity region within the
boule, while the starting zinc concentration is kept constant from run to run, so that the net effcet is to obtsin a
variation only of the zinc concentration along the length of the boule.
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Once the wafers were sliced, they were chemically polished using a Br-HBr- Ethylene Glycol solution. The
zinc concentration was determined by first measuring the cut-on wavelength of the CdZnTe wafers using a Perkin-
Elmer FT- NIR Spectrometer. The data was then inserted in the following equation from Hirano', which was derived
from ICP techniques and verified by NIR experiments;

Zn(%) = 289.36 — 0.33804 A(c) m

The term, A(x), is defined by the wavelength corresponding to an absorption coefficient of o=10cm’. We have
found that a better fit exists when the 50% cut-on value is used for the wavelength when covering a greater span of
Zn concentration, although, they are both very close. This data set is then used to extract the segregation cocfficient
and the initial concentration using first order mass balance equations.

The resistivity was determined from resistance measurements taken from a I-V test station at low and high
voltages. Once the wafers were polished, they were subsequently diced into 4mm by 4mm squares with a nominal
thickness of 3mm. A snmphﬂed passivation technique was carried out using hydrogen peroxide solution at rcom
temperature. No guard rings were applied to these devices. Once the fabrication was completed, radiation spectra
were obtained using ¥'Co sources at room temperature. The spectrum was obtained on a DSA-1000 DSP using
Genic 2000 software system from Canberra Industries, along with corresponding pre-amplifier.

3. RESULTS AND DISCUSSIONS
Zinc Distribution

The FTIR curves are shown in Figure 1 for different slices along a CdZaTe boule, as well as a FTIR curve
of a CdTe wafer. The energy gap was extracted from the cut-on wavclength corresponding to the 50% transmission.
This method provided the most accurate results as it gave the best fit when a reference CdTe wafer was used which
has a known band gap of 1.446 eV. Table 1 lists the zinc concentration calculated from the equation above. It can be
seen that the bottom region, which is first to solidify, has a higher concentration than that of the top final region that
solidifics. This is bccause, since the segregation coefficient for zinc is positive, there will be a tendency for the
newly solidified portion to be higher in zinc concentration than the final solidified region.

The segregation cocfficient can be extracted from the following equation, which assumes complete mixing;

-\
C.(x)=kC, 5 )

Where, C ,(x) is the concentration in the solid and C, is the initial Zn concentration in the melt, / is the length of the
crystal, x is the fraction solidificd, and & is the segregation coefficient. Entering the data from Table 1 into the
cquation above gives a mnge in segregation cocfficient between X = 1.25-1.42. This range in value is very close that
reported earlier by Fougeres?, which had obtamed a segregation coefficient of k=1.30 for best fit. It is also in the
range of 1.05- 1.60 cited by Radhakrishnan’. Table 2 lists the zinc segregation coefficient from various sources.
Figure 2 shows a plot of Equation 2 for the different k values that werc obtained in this experiment. The dashed line
corresponds to a segregation coefficient of 1.34, which fits the data somcwhat better as it is near the middic of the
calculated coefficient range. Since zinc has a greater tendency to go into the solid phase than cadmium, the initial
ratio in the solid is higher than that in the initial solution. The concentration then tends to decrease as the fraction
solidified increases. It can be seen that the concentration rolls off to nearly 4% at the end of the growth. When an
initial concentration, Co, of 9.5% is used, the fit is much better, as can be seen in Figure 3. This could be duc to the
post growth solid-state diffusion that takes place at the relatively high temperatures after the growth.

- High Resistivity Adjustment and ’7Cg Spectra

In an earlier paper’, the concentration of indium in CdZnTe was shown to increase as the growth
progressed due to a segregation coefficient that is lcss than one in this material. The role of indium is cssentially to
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compensate for the nct cadmium vacancies and tellurium anti-sitcs. As a result, by changing the starting indium
concentration, the location of the high resistivity region within the CdZnTc boule can be changed. In the case of
these crystals, the indium concentration was varied from 1x10"% — 5x10" em™ to change location of the high
resistivity region from the lower end all the way to the top of the crystal. For these crystals, the high resistivity
regions were on the order of 5x10° Q-cm - 2x10'° Q-cm.

For the purpose of clarity, we have divided the crystal boule into three semi-distinct regions as shown in Figure
4. A typical Co spectrum obtained from the lower section of crystal that was optimized is shown in Figure 5.
While figure 6 shows the spectrum of the middle part of another crystal that was optimized for high resistivity.
Finally, the spectrum obtained from the top region of a crystal optimized for resistivity is shown in Figure 7. The
detectors produced from the crystal with the lower end optimized for high resistivity shows a very poor 122KeV
peak which is barely noticcable. From the above experiments for the zinc distribution, we know that there is a high
concentration at the lower end of the crystal. We have also shown in an earlier paper, that a high concentration of
zinc tends to produce poorer detector performance. This is believed to be the result of too few tellurium anti-sites in
the rcgion brought on by the reduction of the lattice constant and the subsequent increase in the formation energy of
the Te-anti-sitc. As a result, there exists a greater number of cadmium vacancies which act as cffcctive trap centers,
and ultimately yield poor detector performance, especially with that of higher energy radiation.

For detector performance in the crystals with the top region optimized for high resistivity, it can be scen
that in Figure 7 hardly any peak exists for the 122 KeV energy of ¥Co source. Although, the zinc content is a few
percent lower than the starting concentration, it may have a smaller effect on detector performance when other bulk
properties arc carefully considercd. Table 3 shows data from an earlier paper’ which describes the results of adding
increasing amounts of excess Te in the crystal, where it can be scen that a greater amount of excess Te results in
poor resolution of small secondary peaks as well as high energy peaks. Too much exccss Te will also result in large
tellurium precipitates as well as inclusions, which also act as very effective trap centers for clectrons and holes
within the crystal, and result in poor signal collcction for the device. CdZnTc wafer slices taken from this top region
will tend to have lower IR transmission due to these tellurium precipitates, which absorb energics in the far infrared.
This lower transmission is obvious in Figure 1 for the top region.

In the casc of the crystals with the middlc region being optimized for high resistivity, we can see that the
1Co speetrum is quite good as shown in Figurc 5, where the 122KeV peak shows a resolution of about 5% at room
temperature. The zinc concentration in this middle part of the crystal boule is in the range between 8.5% to 11.5%,
with the center being very close to the starting concentration of 10%. The lower part of the middle region scems to
be the optimum, with a zinc concentration of about 11%.

4. SUMMARY

The variation of the zinc concentration within the CdZnTc crystal boules was compared with the location
of the high resistivity region along the length of the crystals with a starting zinc concentration of 10% and 1.5%
excess Te, By varying the indium doping concentration in several CdZnTc boules, the region of high resistivity is
scen to move along the vertical length of the crystal, The cffect of the location of the high resistivity region within
the crystal boule was investigated. The concentration of zinc was cxtracted from FTIR mcasurements, and the
segregation coefficient calculated using data obtained from the CdZnTe crystals. The zine distribution was then
ploited in terms of the location along the crystal length in order to correlate the concentration with detector
performance.

Results suggest that there arc three semi-distinct regions along the length of the boule that give very
different characteristics, where it can be said that the best detector performance is in the middle region, especially at
the lower part of the middle region with a 6% resolution. It is determined that this middle region has a zinc
concentration of ~9-11%, which varies slightly from the original concentration of 10%. Although, the resistivity was
optimized in the other regions to obtain high breakdown voltage for spectrum analysis and proper detector
performance, the inherent crystal quality was unchanged. From the results, it is very likely that crystalline defects
and inclusions play a greater role in determining the performance characteristics of CdZnTe radiation detectors,
perhaps more so than the amount of zinc. Because the amount of indium used to dope the material and obtain high
resistivity crystals is very low (mid 10" ), it is unlikely that impurities have played a large role in the performance
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of these gamma-ray detectors. However, morc tests should be carried out to verify this assertion. Nevertheless,
additional work is nccessary to adjust the zinc concentration so that the middle part of the crystal, where it is
believed that crystalline imperfections are minimal, has differing amounts of zinc for different boules, in order to
determine whether an ideal concentration exists.
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Table 1: Zinc composition extracted from FTIR measurcments

Wavelength (nm) Zn Concentration Fraction solidified
817.9 12.9% 0.08
822.3 11.3% 0.29
827.2 9.7% 0.49
830.5 8.6% ‘0.68

Table 2: Zinc segregation coefficient from literaturc.

source k
Fougeres 130
Radhakrishnan 1.17
Weigel 1.45
Capper 1.05-1.60
{cited in Radhakrishnan)

Table 3: Effect of increasing excess Tc in the crystal

Stoichiometry 1.000

(Te/{Cd+Zn))

Crystal Log # 9294
Resistivity (Q-cm) 10°
FWHM of “'Am Not
. @59.5keV Resolved

1.010

9489
10®

Resolved

1.015 1.020

9872 9618

=10° >10°
3.6 keV 6.5 keV

1.030

9238

>10°

6.6 keV
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Much?” IEEE NSS/MIC Conference, 2003.

2. M. Chy, S. Terterian, and D. Ting, “Role of Zn in CZT Radiation Detectors: Why Zinc? How
Much?” Submitted to IEEE Transaction on NSS/MIC Conference, 2003.
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ROLE OF ZINC IN CdZnTe RADIATION DETECTORS:
WHY ZINC? HOW MUCH?

Muren Chu, Sevag Terterian, and David Ting

Abstract-CZT crystals with Zn contents of 0%, 10%, 15%, and 20% have been grown and detectors
have been produced. Infrared transmission measured on the wafers sliced from these crystals shows that as
the Zn content increases, there is a reduction in the transmission toward longer wavelengths, indicating the
existence of an increasing amount of larger Te-precipitates. For producing high resistivity materials, a higher
concentration of indium is slso required for CZT with higher Zn content. The best detectors were produced
in CZT with 10% Za, while CdTe detectors are unable to resolve the “Co 122keV peak and CZT detectors
with 15% and 20% Zn display high noise levels at energles below this peak.

The above results are explained by a model that the role of Zn in CZT is to reduce the density of
Teca to increase the density of V¢, and to enhance the diffusion rate of Voi The higher amonnt of Te-
precipitates in CZT with more Zn is caused by the rapid merge of V¢4 through fast diffusion of V¢y Because
of the trapping by the Te-precipitates, detectors fabricated on CZT with 10% and 20% Za are inferior to the
10%Zn CZT detectors. On the other hand, CdTe and CZT with Zn content less than 7% Zn have a high
concentration of Tecy, Vg, and complexes such as Tegy Vey and Tecy(Veq), which are alse trapping centers.,
As a result, the detectors fabricated on these crystals are also inferior to the 10% Zn detectors. The optimal
Zxn content for CZT grown using our technique is therefore near 10%.

Key Words: CdZnTe, CZT, Radiation Detector, Defect, Cd Vacancy, Te Antisite, Te Precipitate
1.0 INTRODUCTION

CdZnTe (CZT) detectors have been used for many applications in recent years' and tremendous cfforts
have been directed to improving and to understanding CZT materials.>” Two interesting questions arisc regarding
using CZT instead of CdTe for producing room temperature detectors: (i) how does Zn improve the detector
performance, and {ii} what is the optimal Zn content for producing the best detectors? This paper attempts to answer
these two questions using a model involving native defects of Cd vacancies (Vg) and Te antisites (Tegg, Te at Cd
sites). In Section 2, the basic theory of evolvement of Vg and Tecq in CZT is presented. Scction 3 describes
experimentally and theoretically how the evolved defects affect the properties of CZT materials and detectors.
Based on the above results and discussion, a model is proposed in Section 4 to answer the above two questions.
Finally, the findings of this paper are summarized in Section 5.

2.0 THEORY ON DEFECTS

In References 2 and 6, it was shown that CdTe and CZT grown with 1% or less excess Te using the
Bridgman technique have residual Cd left in the growth quartz crucible while the crystals grown with 1.1% or more
Te excess have residual Te left. This phenomenon indicates that CdTe/CZT can accommodate 1% or morc excess
Te at growth temperature. In Reference 2, it was also demonstrated that with 1.1% or more excess Te, the as-grown
CZT with a Zn contents less than 7% are p-type. This indicates the crystals have more Tegy than Vg, at room
temperature. But under the identical growth conditions, CZT with Zn contents over 7% are ?-type because of more
Via than Tecy. At room temperature, the concentration of Tecy and Vi, are on the order of 10 to 10" cm®,

Based on thermodynamics, under equilibrium conditions, the concentration of any point defect at any
specific temperature can be written as

Ci=GCa - exp(- E/kT) £))
Where C, is partial pressure dependent but temperature independent constant, E; is also a partisl pressure

dependent defect formation energy. Using this cquation, the dynamics between the defect species and densities at
growth temperature and those at room temperature can be described by the following simple model based on
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CdgoZng,Te grown with more than 1.1% excess Te.? As shown in Figure 1(a), Vca and Tegy arc the dominant
defects at CZT growth temperature. Each Vg, is counted as one excess Te atom and Teg, is counted as two excess
Te atoms. The densities of thesc defects are on the order of 1x10% ecm™. According to Eq. (1), the densitics of these
defects will be reduced during the post-growth cooling period from growth temperature to room temperature. Since
Teca is not a mobile species, it is reasonable to assume that the diffusion of Vg, especially through Zn sites,
dominates the process of reducing the densitics of both Tegs and Veq. . .

If during the cooling period, the equilibrium condition is not maintained and V4 is not allowed to diffuse
out of the CZT crystals, the resultant defect species will be similar to those shown in Figure 1(b). Some of the V¢4
will form defect complexes with Teg, to form defect complexes such as Tece(Vea)® and Teca(Vea).! The other Veg
will merge together to form voids with Te precipitates inside. The size of the Te precipitates can vary from sub-
microns to tens of microns.

In principle, if the post-growth cooling is kept in equilibrium with the overpressure,® The defects can
diffuse out of the crystal and their densities will be reduced from Figure 1(a) to Figure 1(c) during thc cooling
process. However, this process may not be practical, especially at lower temperature because it takes a lengthy
duration for the equilibrium to be maintaincd. The most probable result is shown in Figure 1(d). The densities of
point defects are similar to those in Figure 1(b), but the densities of other defects are much less.

Infrared transmission measurement is a powerful tool used to estimate the size and the relative amount of
the Te precipitates. Based on basic wave theory, a photon with its wavelength comparable to or smaller than the
particle will be scattered. Therefore, from the reduction of infrared transmission, the size and quantity information of
the Te precipitates in CZT can be obtained. For this paper, the transmission curves have been measured on 2.5mm
thick CZT/CdTe wafers for analysis, )

3.0 EXPERIMENTAL RESULTS AND DISCUSSION

CZT Crystal Growth and Device Processing

The 1.5" to 2.2” diameter CZT crystals have been grown by the vertical Bridgman technique. For
consistency, all crystals to be discussed in this paper have a diameter of 1.5” and a boule length of 6”. For better
detector property, 1.5% excess Te have been introduced into the growth melt for defect control.® Raw Cd, Te, and
Zn in 7N impurity grade arc the standard starting material. Occasionally 6N grade materials are used for impurity
investigation purpose. But no significant effect has been observed between the 6N and 7N raw materials.

In Reference 9, we reported that the best section of each crystal for producing detectors is the region 30% -
50% from the lower end of each boule. Thercfore, all of the detectors produced for this paper are fabricated from
this particular section of each crystal.

The CZT detectors with a 4mmx4mmx3Imm sizc have a simple planar structurc. Au contacts were
deposited onto the opposite sides of the 3nun dimension and oxide was applied for surface passivation. No guard
ring was eraployed.

CdTe Material and Detector

The infrared transmissions at various sections of undoped CdTe grown with 1.5% exess Te have been
measured and arc shown in Figure 2. The horizontal axis is the wave number, which is equivalent to a wavelength
range from 2.2 — 22.0pum. Due to reflection loss, the maximum theoretical transmission is 67%. Curve 1 represents
the transmission of CdTe near the bottom of the boule. The fall off in the far infrared region is duc to free electron
absorption, which indicates the n-type conduction of the as-grown, undoped CdTe. In the 2.2 — 5.0im region, the
transmission is 64%, demonstrating a low density of Te-precipitates in dimensions equivalent to these wavelengths.
Curve 2 represents the transmission measured in the CdTe section 20% -~ 60% from the bottom of the crystal. The
smaller fall off in far infrared than that shown in Curve 1 suggests that the elcctvon density in this section of CdTe is
less than that in the bottom region. The existence of small Te-precipitates can be visualized from the reduced
transmission in the 2.2 — 3.0um wavelength.
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Curve 3 represents the transmission measured in the CdTe section 60% - 85% from the bottom of the
crystal. This curve is similar to the one in Curve 2 except that there is no far infrared fall off. However, Hall
measurement shows that the material remains n-type. Curve 4 is the transmission measured on wafers sliced from
the top 15% of the CdTe crystal. The reduced transmission indicates the existence of Te-precipitates with sizes up
to 10pm and beyond. Hall measurement shows that the material in this region has a high resistivity.

The above results show that as the CdTe growth continues, the amount of excess Te in the melt increases
due to the segregation of Cd; and more Te is incorporated into the crystal in the form of Vg As a result, during the
post-growth cooling period, more complexes and Te precipitates are formed toward the top of the crystal to
compensate for the Tec, and to reduce the infrared transmission.

Since the undoped CdTe are n-type,? arscnic, which are acceptors in CdTe, were introduced into the growth
melt for producing high resistivity crystals. With an arsenic dose of 2x10'7 cm™, CdTe with a resistivity of 1.5x10'
Q-cm were produced. The transmission curves measured on the high resitivity material do not exhibit the fall off
found in Curves 1 and 2 in Figure 2. The *'Am and ¥'Co spectra measured by detectors fabricated on the high
resistivity CdTe are shown in Figure 3(a) and 3(b), respectively. The radiation peaks in **'Am can be observed, but
the resolution is low. On the other hand, the *’Co pecaks are not present. 1t is evident that the hole and/or electron
trapping is rather severe in the CdTe crystal.

Cdy sZns;Te Material and Detector

The infrared transmission curves measured on CdyeZng,Te arc shown in Figure 4. Since the undoped
CdgsZng, Te crystals are p-type, the free electron absorption shown in Curves 1 and 2 in Figure 2 are not found in
the 10% Zn CZT. In reality, both undoped and indium-doped have similar transmission curves. Curve 1 in Figure 4
represents the transmission measured from a CdyeZngTe section 0% to 50% from the bottom of the boule. The
high transmission from 2.2 —~ 22.0pm indicates few Te precipitates in this wavelength range. Curve 2 in Figure 4 is
the typical transmission curve mcasured from a scection 50% to 85% from the bottom of the crystal. Slight
transmission reduction is observed below 3.3um, indicating the existence of Te precipitates with sizes smaller than
the magnitude of this wavelength. The transmission measured from the top 15% of the CdgsZng; Te crystal is shown
in Figure 4(a). The reduction in the transmission up to 20.0um indicates the existence of Te precipitates with all
sizes up to this dimension.’

The near transmission curves measurcd on wafers sliced from various sections of the CdogZng Te are
shown in Figure 5. From the bottom to the top of the crystal, the transmission decreases monotonically,
demonstrating the increasing amount of the density of small Te-precipitates,

A low indium doping of 2.5x10" cm” is sufficient to compensate for the residual Vg over Tegy in
CdgeZn,,  Te for the crystal to reach a high resisvity of 2x10" Q-cm. The *'Am and 'Co spectra measured by
detcctors fabricated on the high resistivity Cdg¢Zng ;Te are shown in Figure 6(a) and 6(b), respectively. Both exhibit
cxcellent resolutions of the radiation peaks. The FWHM of the 'Co 122keV peak is 5.3%.

Cds ssZna sJe Material and Detector

Figure 7 shows the transmission curve measured on a section, 20% to 50% from the bottom of a typical
high resitivity, indium-doped CdygsZngsTe crystal. Comparing this curve to those measured on CdTe and
CdgsZng,Te in similar boule sections, the infrared transmission of CdygsZnig,isTe in the 2.2-13um range is clearly
lower. This result lcads to the conclusion that under identical growth conditions, more Te precipitates exists in
CdyssZnig5Te than CdTe and Cdg9Zny Te.

An indium doping of 3.0x10'* cm™ was introduced to compensate for the residual V¢4 over Teg; in
CdysZng, Te for the crystal to reach a high resisvity of 1.2x10" Q-cm, The ' Am and 'Co spectra measured by
detectors fabricated on the high resistivity Cdg gsZing 15Te are shown in Figure 8(a) and 8(b), respectively. Compared
to the spectra in Figurc 6 for CdgsZng;Te, the *'Am spectrum of CdygsZngsTe is very similar, Furthermore, the
FWHM of ¥Co 122 keV has a slightly higher valuc of 5.9%. The major differcnce is that the CdggsZng,sTe *'Co
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has a higher noise between the 14keV and the 122keV peaks due to the trapping, clearly related to the higher density
of Te-precipitates.

CdasZns sTe Material and Detector

The transmission curve in Figure 9 was measured on a section 20% to 50% from the bottom of a typical
high resitivity, indium-doped CdggZng;Te crystal. The infrared transmission is substantially lower than those
measured on the three crystals discussed early. This result clearly demonstrates that CdggZng;Te has a much higher
density of Te-precipitates than CdTe, Cdo9Zng Te, and CdggsZng sTe. For achieving high resistivity, an indium
doping level of 1.3x10" cm™ is required. The CdysZne;Te detector’s ' Am and ¥'Co spectra shown in Figure 10
are also inferior to those measured by the other three crystals.

i

4.0 DEFECT MODEL AND DISCUSSIONS
Defect Model

The above results are summarized in Table 1 for analysis. From these data, the following phenomena are
observed:

i} As Zn content increases, the infrared transmisston measured on the CZT wafers at a given wavelength decrease
accordingly, indicating a higher density of Te-precipitates.

ii) As Zn content increases, the infrared transmission measured on the CZT wafers have lower transmissions at
longer wavelengths, suggesting the existence of larger Te-precipitates.

iii) As Zn content increases, a higher donor impurity is required for achieving high resistivity, demonstrating
increasing amount of uncompensated acceptors.

iv) Among the grown crystal, the best detectors are produced in CZT with 10% Zn. Inferior detectors are produced
in CdTe and CZT with a Zn composition equal to or higher than 15%.

v} High 'Co noises are observed on CAT e, CdyssZngsTe, and CdgsZng,Te detectors at energics below 122keV
compared to CdgeZny,  Te detectors. As Zn content increases from 15% to 20%, this phenomenon is even more
pronounced. A hump is actually found in the CdgZng;Te ¥'Co spectrum.

A semi-quantitative model depicted in Figurc 11 was developed to explain the above observations. The
vertical axis is the density of defects and the x-axis is the Zn content in the CZT crystals. As shown, the densities.of
Vg and Tegy in CdTe is on the order of 1x10” cm™ at the growth temperature as described in Section 2. As
increasing amount of Zn is introduced into CdTe, the density of V¢, increases and that of Tecy decreases because of
the reduction in the lattice paramcter. This proposition is consistent with the fact that undoped CZT is n-type
without Zn and is p-type with 10% Zn. This is also in agreement with the fact that the undoped ZnTe is always p-
type. This proposition is also confirmed by a recent paper.® Therefore, the semi-quantitative densities of Vg and
Tecy are plotted in Figure 11 with V4 and Tec, increases and decreases, respectively, with the Zn content.

The differcnce of the densities of Vg and Tecy (Veg-Tecy) at room temperature is equivalent to the clectron
density or the hole density of the undoped CZT crystal and is plotted at the lower portion of Figure 11. Another
critical curve is that of the density of the Te-precipitates. Theorctically, Zn atom moves faster than Cd because of
their size. Since the diffusion rate of V¢, is proportional to the diffusion rate of Zn and Cd, it can be concluded that
V¢a is much more mobile in CZT with a higher Zn content. It is the fast Vi, diffusion rate in high Zn content CZT
propels the mergeing of Vs, This creates a higher density of Te precipitate, which results in a lower transmission in
CZT as Zn content increases. Therefore, the curve of Te-precipitates is monotonically increasing with the Zn
content in the CZT crystals.

Since in CdTe and CZT with smaller amount of Zn, only small amount of Te-precipitates are formed
during the post-growth cooling period by the merges of V4, most of the defects generated at the growth temperature
will remain either as point defects or form defect complexes such as Tecy Veg and Tees(Vea)®. Therefore, we can
expect that the densities of Tegy, Vg and defect complexes all decrease monotonically as CZT Zn content increases.

To construct the curve of Tecy density, we can assign a density of 1x10' em™ 1o Tegy in CZT with 10% Zn
as discussed in References 6 and 10. Then, the densities of Tecy in other crystals can be approximated by the
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conclusion of the above discussion. Another factor to support this concept is the Tec, density at growth temperature
in Figure 11, showing a monotonically decreasing Tecs density as Zn content increases. Hence, we can expect the
same trend for the room temperature Tecy density. The density of Vg in CZT is simply the sum of the densities of
Teca and the measured room temperature hole/electron concentration. .

Why Zinc? . . M

With the above discussion, the two questions raised in Section 1.0 can be successfully explained. First of
all, CdTe and CZT with lower amount of Zn contents have higher density of Tecy during the growth than CZTs with
more Zn content. Although additional V¢, are introduced as the Zn content increases, the density of V¢4 can be
reduced during the post-growth cooling process because of its fast diffusion rate. As a result, at room temperature,
CdTe and low Zn content CZT have many more point defects and defect complexes to trap both clectrons and holes.
Consequently, the Co 122keV peak cannot even be observed in Figure 3. Therefore, the role of Zn is to reduce the
densities of these carrier traps.

How Much?
*  However, as the Zn content increases to a certain level, the density of Vg will reach a high level to the
degree that during the post-growth cooling, Vg merge together to form Te-precipitates form before they can diffuse
out of the crystals. As a result, the Te-precipitates trap the carriers and degrade the detector resolution. The 60keV
hump in Figure 10(b) can be assigned to this cffect.

Based on our results, the CdTe and Cdgy9Zn,,Te have poor detector resolution because of the trapping of
chargc carrier by Tecy, Vica, and complexes such as Tecy Ve and Teeg(Veg). CdgsZng,Te has a serious trapping of
charge carriers by Te-precipitates. The high noise of CdypgsZno, sTe below 122keV in Figure 8(b) even shows some
Te-precipitates trapping cffects. Therefore, CZT with content near 10% offers the best detectors.

Tt should be noted though that the above discussion is limited to crystals grown under our specific
conditions. Crystals grown differently may draw slightly different conclusions as to the optimal Zn content for
producing the best detectors. The purpose of this paper is to present the mechanism of how defect evolvement
affects the crystal material and detector and new growth approaches can be developed to optimize the CZT detector
performance.

5.0 SUMMARY

CZT. crystals with Zn contents of 0%, 10%,15%, and 20% have been grown and detectors have been
produced. Infrared transmission measured on the wafers sliced from these crystals shows that as the Zn content
increases, there is a reduction in the transmission toward longer wavelength, indicating the cxistence of an
increasing amount of larger Te-precipitate. For producing high resistivity materials, a higher concentration of
indium is also required for CZT with higher Zn content. The best detectors were produced in CZT with 10% Zn,
while CdTe detectors was not able to resolve the 'Co 122kcV peak. In addition, CZT detectors with 15% and 20%
Zn display high noisc level at energies below this peak,

These results are explained by a model that the role of Zn in CZT is to reduce the density of Tegy, to
increase the density of Vq, and to enhance the diffusion rate of Vg The higher amounts of Te-precipitates in CZT
with more Zn is caused by the rapid merge of V¢, through fast diffusion of Vg Because of the trapping by Te-
precipitates, detectors fabricated on CZT with 10% and 20% Zn are inferior to the 10% Zn CZT detectors. On the
other hand, CdTe and CZT with Zn content less than 7% Zn have a high concentration of Teg, Vg, and complexes -
such as Tecy Vg and Tecg(Vey), which arc also trapping centers. As a result, the detectors fabricated on these
crystals are also inferior to the 10% Zn detectors. The optimal Zn content for CZT grown using our technique is
thercfore near 10%.
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At growth
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Fig.11 Qualitative defect model showing densities of defects at growth temperature and room tempcerature. At room
temperature, the density of Te precipitates increases with the Zn content while defect complexes such as Teca Vg
and Tecy(Vca)® decease as Zn content increases.
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Table 1 Summary of material and detector characteristics of CZT with different amount of Zn.

Zn Content | Transmission @ | Dopant | Dose | Resistivity | ~ Co 122keV | Noise Below
3.3um | 10um (cm™) (Q-cm FWHM ¥Co 122keV
0% 65.1 | 65.5 | Arsenic | 2x10" 1.5x10 No Peak High
10% 645 | 650 | Indium | 2.5x10" | 2.0x10" 5.3% Low
15% 62.1 | 62.5 | Indium | 3.0x10™ | 1.2x10" 5.9% Medium
20% 575 | 605 | Indium | 1.3x10° | 1.ix10° 15% Hump
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